If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+9y=0
a = 4; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·4·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*4}=\frac{-18}{8} =-2+1/4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*4}=\frac{0}{8} =0 $
| 13+3c=22 | | 2(c-3)+5-3c=-3 | | 5/c-4=2 | | n+3.8=1.6 | | 7/6b-4/3=-2/3 | | x-27=-2 | | 20x-16=4x-8 | | 6=-16t^2+45t+7 | | 61=h+21 | | 40=-1/5q+10q | | 0.08(p-5)=0.06p+0.16 | | 3x2+4=2x2+20 | | n=5n+n+3n | | 2/3x-14=302/3 | | g+13=80 | | -10x-(-10)=0 | | 4(2x-3)+3x=3(x-12) | | x-52=17 | | 6x+8=36-8x | | 4.5x-12.25=14.75 | | -6+y=21 | | 18x-3=210 | | 53=z-6 | | y=6(2.3)^4 | | 20x-16=4+16 | | 1/3(6x+24)-20=1/4(16x-56) | | 35=u-19 | | 3/4c-5/4=1/4 | | 20x-16=4+12 | | n/2.7+34.4=48.2 | | (1x+2)(x^2+3x+1)=0 | | x+87=19 |